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Abstract 

The objective of this paper is to investigate the properties of GARCH (1,1) model 
and to perform inference using a Bayesian approach. In doing so, the Markov 
Chain Monte Carlo (MCMC) approach is used for estimating the parameters of 
GARCH (1,1) and the t-GARCH (1,1) models. We examine the U.S.- Japan and 
the U.S.-U.K. exchange rate series. The empirical analysis reveals that the 
MCMC approach is found to be effective for each return series. 

1. Introduction 

Stochastic volatility (SV) models are useful as they are employed to 
estimate the value of market risk. These models are also used for pricing 
financial derivatives. There exists a large body of research on volatility 
models. Engle [3], for example, proposes the autoregressive conditional 
heteroskedastic (ARCH) model for modelling financial time series 
exhibiting time-varying volatility clustering. Bollerslev [2] later extends 
Engle’s original work by developing a technique that allows the 
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conditional variance to be an autoregressive moving average (ARMA) 
process. This extended process is known as generalized autoregressive 
conditional heteroskedasticity model or GARCH model. Since then 
multiple extensions of this GARCH model have been proposed. The 
exponential GARCH (EGARCH) model of Nelson [11] and the GJR model 
of Glosten et al. [6], which are two popular extensions of the GARCH 
model, make an important improvement over the symmetric GARCH 
model by presenting the asymmetric response of volatility to positive and 
negative returns. 

However, although GARCH-type models are usually estimated using 
the classical maximum likelihood technique, the Bayesian approach also 
offers an attractive alternative. It enables small sample results, 
probabilistic statements on nonlinear functions of the model parameters, 
selection and combination of non-nested models. Due to these numerous 
advantages, the study of GARCH-type models from a Bayesian view point 
can be considered very promising. 

In the present paper, an attempt has been made to study the GARCH 
(1,1) model and to perform inference using a Bayesian approach. The 
Bayesian computational method used for making inference about the SV 
model parameters is the Markov Chain Monte Carlo (MCMC) approach. 
The empirical analysis shows that the application of this MCMC 
approach improves the inference. 

The rest of the paper is organized as follows: Section 2 explains 
GARCH (1,1) model. MCMC procedure is described in Section 3. Section 4 
summarizes the data and their properties. Results are discussed in 
Section 5. Section 6 concludes. 

2. GARCH Models 

The basic model able to represent non-correlated series with excess 
kurtosis and autocorrelated squares, proposed by Engle [3], is given by 
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,ttty σε=   (1) 

where tε  is an i.i.d process with mean zero and variance 1 and tσ  is the 

volatility that evolves over time. 

The volatility, ,2
tσ  in the basic ARCH (1) model is defined as 
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where 0>w  and 0≥α  for 2
tσ  to be positive. 

The ARCH (1) model can easily be extended to the ARCH (q) model 
as follows: 
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However, early applications of ARCH models needed many lags to 
adequately represent the dynamic evolution of the conditional variances. 
In some applications, q could be even 50. To avoid computational 
problems when estimating such a large number of parameters, the 
parameters were restricted in an ad hoc manner. For example, Engle [4] 

assumed that ( )
( ) .1

1
+
−+α=α qq
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i  

Later, Bollerslev [2] implemented the same kind of restriction used to 
approximate the infinite polynomial of the Wald representation by the 
ratio of two finite polynomials, usually of very low orders. As a result, he 
proposed the GARCH ( )qp,  model given by 
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Then, the GARCH (1,1) model is simply given by 
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where ,0,0 ≥α>w  and 0≥β  to guarantee that 2
tσ  is positive. 
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Usually a GARCH (1,1) model with only three parameters in the 
conditional variance equation is adequate to obtain a good model fit for 
financial time series. Indeed, Hansen and Lunde [8], provided compelling 
evidence that it is difficult to find a volatility model that outperforms the 
simple GARCH (1,1). This led us to the estimation of GARCH (1,1) 
models for the present study. 

However, the likelihood for GARCH (1,1) can be written as 
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where ( ).,,1 nyyy …=  Thus the log-likelihood is 
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3. Markov Chain Monte Carlo (MCMC) Methods 

The Bayesian approach begins with a prior distribution for an 
unknown and unobservable parameter, say ,θ  where θ  is treated as a 
random variable with a distribution over the parameter space. At this 
stage, before we see any data, say y, the prior distribution reflects our 
degree of belief about. Having seen the data, our degree of belief can be 
updated by using Bayesian calculus. Our prior is now updated in to the 
posterior distribution. A Bayesian model is a probability model that 
consists of a likelihood function and a prior distribution. In the Bayesian 
calculation, the posterior distribution of given y is 

( ) ( ) ( )
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( ) ( )

( ) ( )
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All inference procedures like moment calculation, estimation, and 
decision making are based on this posterior distribution. Inference in the 
Bayesian approach often requires advanced Bayesian computation, and 
here we focus on Markov Chain Monte Carlo (MCMC) sampling. 
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The aim of MCMC methods is to construct a Markov chain, which is a 
sequence of (possibly vector) random variables, { }k,,2,1, …=θ tt  with 

ldimensiona-k  vector of variables. These variables are to be generated 

according to the model where the next state 1θ +t  is sampled from some 

one-step ahead conditional distribution, ( ),1 ttp θθ +  which depends only 

on the current state of the chain, .tθ  Such a Markov chain, under 

regularity conditions, will have an equilibrium or stationary distribution, 
and it is this distribution that plays a central role in MCMC. The Markov 
chain method can be used to sample from any (joint) posterior 
distribution, which defines the equilibrium distribution of the Markov 
chain. The key aspect in the Bayesian inference setting is to define 
precisely the form of the one-step ahead conditional distribution so that 
the equilibrium distribution is required Bayesian posterior distribution. 

The MCMC approach, however, is the main inference technique 
implemented in this paper. As described in Bernardo and Smith [1], the 
basic Bayesian MCMC procedure is the following: 

● Construct a Markov chain on the parameter space ,Θ  which is 

straightforward to sample from, and whose equilibrium distribution is 
( ).yp θ  

● Run the Markov chain sampling process for a long time. 

● The expected values with respect to ( )yp θ  of functions ( )θb  of 

interest are estimated by using the simulated values from the chain. This 
refers to the Monte Carlo integration, where samples from a (posterior) 
probability distribution ( )yp θ  are used to estimate the (posterior) 

expectation for general functions ( )θb  with respect to that distribution, 

i.e., 

( )[ ] ( ) ( ) .θθθ=θ ∫θ dypbbE y  
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The expectation ( )[ ]θθ bE y  is approximated by drawing sample     

{ ( ) ( )}nθθ ,,1 …  from the distribution for some suitably large N, and 

taking the average. That is, 

( )[ ] ( ( ) ).1

1

i
N

i
y bNbE θ≈θ ∑

=
θ  

For example, the expectation, ( )[ ]θθ bE y  with ( ) θ=θb  can be 

approximated from the sample using the sample mean of 
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● In order to implement this strategy, algorithms for constructing the 
Markov chain with specified equilibrium distribution are required. 
Fortunately, several proscribed Markov chain construction schemes exist 
and we outline the two most commonly-used methods. The first method is 
the Gibbs sampler introduced by Geman and Geman [5]. The second 
method is the Metropolis-Hasting (MH) originally developed by 
Metropolis et al. [9] and further generalized by Hastings [7]. These two 
samplers are simple to implement and are effective in practice when used 
for Bayesian inference. 

4. Data 

The study utilizes the U.S.-Japan and U.S.-U.K. daily exchange rate 
series. The time period for each series ranges from January, 2000 to 
January, 2012. We choose exchange rate data because they typically 
exhibit high degree of volatility clustering. We consider daily returns of 
the exchange rate as daily returns exhibit stronger degree of short-term 
volatility clustering than intra-day data and are less noisy. Moreover, the 
weekend effect is less important for currency data than for stock return 
data. Therefore, the need for using weekly data to avoid such minor 
problems is less important.  
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However, the return series is calculated as follows: 

,ln100
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where tP  denotes the observed daily price at time t and ty  is the 

corresponding daily return. 

Table 1 displays the main empirical properties of these two return 
series. Inspecting these properties indicates that both series show almost 
zero means and excess kurtosis (always above 3) for the normal 
distribution value. 

Table 1. Summary statistics of the returns series 

Series N Mean St. Dev. Skewness Kurtosis 

U.S.-Japan 3050     0.00969 0.66400    0.355 3.531 

U.S.-U.K. 3050 – 0.00142 0.62302 – 0.048 3.905 

This table presents the descriptive statistics of both returns series. 
St. Dev. indicates the standard deviation of individual series. 

5. Results and Discussions 

5.1. Bayesian inference for GARCH (1,1) model 

For the GARCH (1,1) model defined in (5), we consider the following 
priors: 

( ),,0~log 2
0 0α

σα N  

and 

( ),,,Dirichlet~, 32111 δδδβα  
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2

0
=δδδ=σα  
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The Dirichlet prior is the most commonly used prior for parameters 
restricted to a simplex region and can be tailored to respect genuine prior 
beliefs. Here, we considered the uniform prior. However, a prior model 
favoring large 11 β+α  (and near non-stationarity) can also be employed. 

Hence the posterior distribution for the GARCH (1,1) model can be 
written as 
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A similar Bayesian approach has been implemented by Nakatsuma 
[10]. He considers normal prior for all the parameters. But such a prior 
may not be appropriate since ( )11, βα  are restricted to lie between 0 and 1. 

5.1.1. Posterior output analysis summary 

We now study the posterior statistics for each data series, which have 
been obtained by MCMC implementation. Table 2 displays posterior 
summaries for the parameters in the GARCH (1,1) model for each series 
considered in this study. To explain the stability and persistence of 
GARCH (1,1) model, the sum of 1α  and 1β  needs to be examined. It is 

evident from Table 2 that each series estimates the values of 11 β+α  to 

be significantly close to one. And this is very usual in practice. In 
addition, the estimated values of 1α  are close to one and that of 1β  are 

close to zero. Thus, there exists considerable persistence in volatility, 
moving towards non-stationarity. 
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Table 2. Posterior statistics of GARCH (1,1) model 

 Series U.S.-Japan U.S.-U.K. 

Mean 0.9247 0.9012 
Median 0.9259 0.9036 1α  

Std. 0.0102 0.0091 
Mean 0.0732 0.0956 

Median 0.0739 0.0961 1β  
Std. 0.0089 0.0097 

Mean 0.9979 0.9968 
Median 0.9992 0.9999 11 β+α  

Std. 0.0095 0.0118 

This table presents the posterior summaries for GARCH (1,1) 
model with Std. implying the standard deviation. 

5.2. Bayesian inference for student-t GARCH (1,1) model 

5.2.1. The student-t GARCH model 

The student-t GARCH (1,1) model can be formulated as follows: 

( ),,0~,2
ttttt Ny λεσε= k  

where 

( ),2,2~ vvIGammatλ  

and 10 11 <β+α<  to guarantee stationarity. Moreover, the parameters 

ntt ,,1, …=λ  modify the model so that 

( ),,,0~ 22 vty ttt σσ k  

with 0>v  representing the degree of freedom and k  being a constant. 
Also 2>v  guarantees the finiteness of the conditional variance of .ty  If 

we set ,2
v

v −=k  then the conditional variance of ty  becomes .2
tσ  
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However, setting tt ∀=λ 1  yields the original GARCH (1,1) model. 

Finally, for finite kurtosis, the restriction is .4>v  

5.2.2. Posterior output analysis summary 

The posterior summaries for the t-GARCH (1,1) model parameters 
with 5=v  are shown in Table 3. Results reveal that the posterior mean 
and median values of ( )11 β+α  are markedly less than 1. This indicates 

that there is less persistence than indicated in the GARCH (1,1). In 
contrast, each of the given series produces the values of ( )11 β+α  to be 

close to 1 indicating significant persistence in volatility. 

Table 3. Posterior statistics of t-GARCH (1,1) model 

  Series U.S.-Japan U.S.-U.K. 

Mean 0.9101 0.8909 
Median 0.9115 0.8917 1α  

Std. 0.0993 0.0157 
Mean 0.0844 0.0633 

Median 0.0849 0.0640 1β  
Std. 0.0274 0.0094 

Mean 0.9945 0.9542 
Median 0.9987 0.9574 11 β+α  

Std. 0.0192 0.0096 

This table presents the posterior summaries for t-GARCH (1,1) 
model with Std. implying the standard deviation. 

6. Conclusion 

This paper presents a modest attempt to investigate the properties of 
GARCH (1,1) model and to perform inference using a Bayesian approach. 
To do so, the Markov Chain Monte Carlo (MCMC) approach is employed. 
The study, however, inspects two important exchange rate series which 
are U.S.-Japan and U.S.-U.K.. The MCMC approach used for the 
estimation of the GARCH (1,1) and the t-GARCH (1,1) models is found to 
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be effective with each of the exchange rate series under study. While 
comparing the findings using the same MCMC sampling scheme for the 
two GARCH models, there is clear evidence that the persistence 
parameters ( )11 β+α  are close to 1, and thus are closer to 

nonstationarity in the GARCH (1,1) model than those in the t-GARCH   
(1,1) model. We further note that the posterior median values of 
( )11 β+α  are estimated to be very close to 1 for each series considered in 

this study. 
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